Dense Deformation Reconstruction via Sparse Coding
نویسندگان
چکیده
Many image registration algorithms need to interpolate dense deformations from a small set of sparse deformations or correspondences established on the landmark points. Previous methods generally use a certain pre-defined deformation model, e.g., B-Spline or Thin-Plate Spline, for dense deformation interpolation, which may affect the final registration accuracy since the actual deformation may not exactly follow the pre-defined model. To address this issue, we propose a novel leaning-based method to represent the tobe-estimated dense deformations as a linear combination of sample dense deformations in the pre-constructed dictionary, with the combination coefficients computed from sparse representation of their respective correspondences on the same set of landmarks. Specifically, in the training stage, for each training image, we register it to the selected template by a certain registration method and obtain correspondences on a fixed set of landmarks in the template, as well as the respective dense deformation field. Then, we can build two dictionaries to, respectively, save the landmark correspondences and their dense deformations from all training images at the same indexing order. Thus, in the application stage, after estimating the landmark correspondences for a new subject, we can first represent them by all instances in the dictionary of landmark correspondences. Then, the estimated sparse coefficients can be used to reconstruct the dense deformation field of the new subject by fusing the corresponding instances in the dictionary of dense deformations. We have demonstrated the advantage of our proposed deformation interpolation method in two applications, i.e., CT prostate registration in the radiotherapy and MR brain registration in the neuroscience study. In both applications, our learning-based method can achieve higher accuracy and potentially faster computation, compared to the conventional
منابع مشابه
Reconstructing the tongue surface from six cross-sectional contours: ultrasound data
This work presents a method for reconstructing 3D tongue surfaces during speech from ultrasound data. The method reduces the dimensionality of the tongue surface and maintains highly accurate reproduction of local deformation features. This modification is an essential step if multiplane tongue movements are to be reconstructed practically into tongue surface movements. Earlier work (Stone & Lu...
متن کاملScale Selection of Adaptive Kernel Regression by Joint Saliency Map for Nonrigid Image Registration
Joint saliency map (JSM) [1] was developed to assign high joint saliency values to the corresponding saliency structures (called Joint Saliency Structures, JSSs) but zero or low joint saliency values to the outliers (or mismatches) that are introduced by missing correspondence or local large deformations between the reference and moving images to be registered. JSM guides the local structure ma...
متن کاملDense 3D Reconstruction with a Hand-Held Camera
In this paper we present a method for dense 3D reconstruction from videos where object silhouettes are hard to retrieve. We introduce a close coupling between sparse bundle adjustment and dense multiview reconstruction, which includes surface constraints by the sparse point cloud and an implicit loop closing via the dense surface. The surface is computed in a volumetric framework and guarantees...
متن کاملMarker-Less Reconstruction of Dense 4-D Surface Motion Fields Using Active Laser Triangulation for Respiratory Motion Management
To manage respiratory motion in image-guided interventions a novel sparse-to-dense registration approach is presented. We apply an emerging laser-based active triangulation (AT) sensor that delivers sparse but highly accurate 3-D measurements in real-time. These sparse position measurements are registered with a dense reference surface extracted from planning data. Thereby a dense displacement ...
متن کاملRobust Compressed Sensing and Sparse Coding with the Difference Map
In compressed sensing, we wish to reconstruct a sparse signal x from observed data y. In sparse coding, on the other hand, we wish to find a representation of an observed signal y as a sparse linear combination, with coefficients x, of elements from an overcomplete dictionary. While many algorithms are competitive at both problems when x is very sparse, it can be challenging to recover x when i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012